

CARRERA DE MEDICINA - CICLO 2026

MODULO: QUIMICA

PROGRAMA DE ESTUDIO

UNIDAD N°1: LA MATERIA Y SUS PROPIEDADES. LEYES Y TEORÍAS FUNDAMENTALES DE LA QUÍMICA.

Contenidos conceptuales:

Materia y energía. Propiedades de la materia: físicas y químicas, extensivas e intensivas. Estados de agregación de la materia: líquido, sólido, gaseoso, plasma. Cambios de estado. Transformaciones físicas y químicas. Sistemas heterogéneos y homogéneos. Métodos de separación y fraccionamiento. Sustancias simples y compuestas. Elementos. Símbolos. Composición centesimal. Leyes ponderales de la química: Lavoisier, Proust, Dalton y Richter. Ley de las combinaciones gaseosas: ley de Gay Lussac. Teoría atómica de Dalton. Hipótesis molecular de Avogadro. Átomos y moléculas. Masa atómica y masa molecular. Concepto de mol. Volumen molar. Fórmula mínima y molecular. Estado gaseoso. Leyes del estado gaseoso. Ecuación general del estado gaseoso.

Indicadores de logro:

El/la aspirante:

Comprende y explica los conceptos de cuerpo, materia, energía.

Identifica y utiliza en modelos reales las nociones básicas de materia, sustancia simple, sustancia compuesta.

Distingue las características específicas de los estados de la materia.

Diferencia y clasifica los cambios físicos de los químicos en las transformaciones de la materia.

Define los conceptos de mezcla, sustancia pura, fase y componente.

Aplica los conceptos adquiridos en la identificación y clasificación de los sistemas materiales. Resuelve problemas de composición centesimal.

Diferencia el significado de los términos molécula, átomo, elemento y compuesto.

Conoce y diferencia las leyes de la química.

Utiliza los conceptos derivados de las leyes fundamentales de la química en ejercicios de conceptos y en problemas de cálculo.

Define los conceptos de masa atómica y masa molecular, mol y volumen molar.

Diferencia y aplica los conceptos de masa atómica y masa molecular, mol y volumen molar en la resoluciónde problemas.

Resuelve problemas de fórmula mínima y molecular.

Conoce y analiza las leyes de los gases.

Diferencia y aplica las leyes de los gases en la resolución de problemas.

UNIDAD N°2: ESTRUCTURA ATÓMICA, TABLA PERIÓDICA Y ENLACES QUÍMICOS.

Contenidos conceptuales:

Evolución del modelo atómico: Dalton, Thomson, Rutherford, Bohr, Schrödinger, Chadwick. Partículas fundamentales: electrón, protón, neutrón. Número atómico. Número másico. Isótopos. Masa atómica promedio. Iones. Modelo atómico moderno. Niveles, subniveles, orbitales. Números cuánticos. Configuración electrónica. Tabla periódica. Grupos y períodos. Clasificación de los elementos según sus propiedades físicas y químicas: metales, no metales y gases inertes. Clasificación de los elementos según su configuración electrónica: elementos representativos, de transición, de transición interna. Propiedades periódicas: radio atómico, radio iónico, energía de ionización, afinidad electrónica, electronegatividad. Enlaces químicos. Teoría del octeto. Notación de Lewis. Uniones entre átomos. Tipos de uniones químicas: metálica, iónica, covalente. Polaridad del enlace. Atracciones intermoleculares: fuerzas de Van der Waals, fuerzas de London, fuerzas dipolo-dipolo, fuerzas dipolo-dipolo inducido, enlace de Hidrógeno.

Indicadores de logro:

El/la aspirante:

Conoce, analiza y compara los diferentes modelos atómicos.

DIRECCION DE ADMISION

Relaciona la estructura atómica con los conceptos de número y masa atómica.

Calcula la masa atómica promedio.

Conoce e interpreta los conceptos fundamentales relacionados con el modelo atómico moderno.

Aplica el concepto de números cuánticos en la distribución electrónica de los electrones de un átomo. Relaciona la ubicación de los elementos en la tabla periódica con la configuración electrónica de cada elementos.

Reconoce cómo las propiedades de los elementos varían en la tabla periódica a lo largo de un período y a través de un grupo.

Vincula las propiedades de los elementos, su ubicación en la tabla periódica con la configuración electrónica de los elementos.

Conoce, analiza y compara los diferentes tipos de unión entre átomos para formar sustancias.

Diferencia los enlaces químicos teniendo en cuenta la electronegatividad y los electrones de valencia de los átomos que lo conforman.

Relaciona las características y propiedades de las sustancias con el tipo de enlace que presentan.

Reconoce en los compuestos, las fuerzas intermoleculares que presentan y analiza las propiedades físicas que se tienen en consecuencia.

Resuelve problemas de aplicación.

UNIDAD N°3: FORMACIÓN DE COMPUESTOS, REACCIONES QUÍMICAS. ESTEQUIOMETRIA.

Contenidos conceptuales:

Reacciones químicas y ecuaciones químicas. Número de oxidación. Tipos de reacciones químicas: de síntesis, de descomposición, de desplazamiento, con formación de gases, sin intercambio de electrones y con intercambio de electrones (óxido-reducción). Formación de compuestos químicos inorgánicos: óxidos básicos, óxidos ácidos; hidruros metálicos, hidruros no metálicos, hidróxidos, ácidos oxácidos, ácidos hidrácidos, sales oxácidas, sales hidrácidas. Tipos de sales: neutras, ácidas, básicas, mixtas. Estequiometria. Relaciones entre reactivos y productos: moles, equivalentes, masas y volúmenes. Reactivo limitante y en exceso. Rendimiento de una reacción. Pureza de reactivos.

Indicadores de logro:

El/la aspirante:

Distingue y plantea correctamente una ecuación química.

Reconoce las diferentes funciones químicas inorgánicas.

Nombra y clasifica correctamente los compuestos químicos.

Reconoce el tipo de reacción química que representa una determinada ecuación química.

Diferencia distintos tipos de reacciones químicas y su aplicación en problemas tipo.

Reconoce reacciones de óxido reducción e identifica la especie que se oxida y que se reduce.

Define el concepto de estequiometria.

Resuelve problemas de estequiometria, estableciendo relaciones cuantitativas de masas, volúmenes, número de moles entre reactivos y productos.

UNIDAD N°4: SOLUCIONES.

Contenidos conceptuales:

Solución acuosa. Componentes de una solución: soluto y solvente. Clasificación de las soluciones de acuerdo a su estado físico y cantidad de soluto. Solubilidad. Soluciones diluidas, concentradas, saturadas y sobresaturadas. Unidades de concentración. Unidades físicas: concentraciones porcentuales volumétricas y gravimétricas. Unidades químicas: molaridad, normalidad, molalidad, fracción molar. Regla de dilución.

Indicadores de logro:

El/la aspirante:

Reconoce las propiedades del agua en relación con su estructura molecular.

Reconoce los tipos y propiedades de las soluciones.

Expresa las concentraciones en diferentes unidades.

Realiza cálculos de dilución.

Resuelve problemas de aplicación.

DIRECCION DE ADMISION

UNIDAD N°5: VELOCIDAD DE REACCIÓN Y EQUILIBRIO QUÍMICO.

Contenidos conceptuales:

Introducción al estudio de la cinética química. Velocidad de reacción. Teoría de las colisiones. Energía de activación. Ley de acción de masas. Orden de reacción. Factores que influyen en la velocidad de reacción. Equilibrio químico. Constante de equilibrio. Cociente de reacción. Factores que afectan al equilibrio. Desplazamiento del equilibrio: principio de Le Chatelier.

Indicadores de logro:

El/la aspirante:

Define reacciones reversibles e irreversibles.

Conoce, comprende y explica los conceptos de cinética química y velocidad de una reacción química.

Interpreta el concepto de constante de velocidad de una reacción química. Identifica los factores que influyen en la velocidad de una reacción química.

Conoce, comprende y analiza el concepto de equilibrio químico en una reacción química.

Interpreta el concepto de constante de equilibrio de una reacción química.

Predice en qué sentido evolucionará una reacción cuando se le aplican distintas variables.

Resuelve problemas de aplicación.

UNIDAD N°6: EQUILIBRIO IÓNICO.

Contenidos conceptuales:

Ácidos y bases. Electrolitos fuertes y débiles. Disoluciones acuosas de ácidos y bases. Teoría de Arrhenius y Bronsted-Lowry. Autoionización del agua. Concepto y medida de pH. Indicadores de pH. Fuerza relativa de ácidos y bases: constante de ionización. Efecto del ión común. Soluciones reguladoras de pH. Ecuación de Henderson-Hasselbach. Hidrólisis.

Indicadores de logro:

El/la aspirante:

Define el concepto de electrolito.

Comprende y explica los conceptos de electrolitos débiles y fuertes.

Nombra y clasifica correctamente los diferentes tipos de electrolitos fuertes y débiles.

Relaciona la constante de equilibrio con la fuerza de un electrolito.

Conoce las teorías ácido-base.

Comprende el concepto de pH y su cálculo.

Utiliza unidades de pH para expresar la concentración de ácidos y bases.

Realiza cálculos de pH de soluciones ácidas y básicas.

Define el concepto de solución amortiguadora.

Realiza cálculos de pH en soluciones reguladoras.

UNIDAD N°7: SUSTANCIAS ORGÁNICAS.

Contenidos conceptuales:

El átomo de carbono. Hibridación de orbitales. Orbitales moleculares. Número de oxidación del carbono. Tipo de cadenas y átomos de carbono en las cadenas de los compuestos orgánicos. Grupos funcionales y familias de compuestos. Hidrocarburos: alifáticos y aromático, de cadena abierta y cíclicos, ramificados y no ramificados, saturados e insaturados. Hidrocarburos alifáticos saturados: alcanos e insaturados: alquenos y alquinos. Hidrocarburos aromáticos y heterocíclicos. Consideraciones generales sobre la nomenclatura de compuestos orgánicos. Propiedades físicas y químicas de los compuestos orgánicos. Métodos de obtención. Isomería: estructural y espacial. Funciones orgánicas. Compuestos oxigenados del carbono: alcoholes, aldehídos, cetonas, ácidos carboxílicos, éteres, ésteres, anhídridos. Compuestos nitrogenados del carbono: aminas, amidas. Halogenuros de ácidos. Moléculas biológicas.

Indicadores de logro:

El/la aspirante:

Explica las propiedades del elemento carbono, sus posibles hibridaciones y los enlaces que puede formar.

DIRECCION DE ADMISION

Reconoce los caracteres generales y la estructura de los compuestos orgánicos.

Aplica reglas básicas de nomenclatura.

Identifica y clasifica los distintos tipos de compuestos.

Reconoce y relaciona las principales propiedades físicas y químicas de las distintas funciones orgánicas.

Establece relaciones entre los distintos grupos funcionales.

Conoce las distintas propiedades químicas de los compuestos orgánicos.

Resuelve problemas de aplicación integrados.

BIBLIOGRAFÍA OBLIGATORIA:

- MAUTINO, JM: Química 4. Aula Taller. 3ª edición, Ed. Stella, Bs. As., 1996.
- MAUTINO, JM: Química 5. Aula Taller. 2ª edición, Ed. Stella, Bs. As., 1995.
- WHITTEN, K; DAVID, R; PECK, M; STANEY, G: Química. 8ª edición, Ed. Cengage Learning, 2008.